Persamaan Garis Singgung Lingkaran

Persamaan Garis Singgung Lingkaran
Sebelum mempelajari persamaan garis singgung, baik dikuasai dulu Persamaan Lingkaran, sehingga tidak kesulitan waktu menentukan pusat-pusat lingkaran yang diberikan maupun jari-jarinya,.


Contoh Soal
1.      Diberikan persamaan lingkaran:

L ≡ x2 + y2 = 25.        Tentukan persamaan garis singgung lingkaran yang memiliki titik singgung di (−4, 3).

Pembahasan
Menentukan garis singgung pada suatu lingkaran yang pusatnya di (0, 0) dan diketahui titik singgungnya.

Lingkaran L ≡ x2 + y2 = r2
Titik singgung (x1  , y1)
Persamaan garis singgungnya adalah:
(x1 y1)
Dengan x1 = − 4 dan y1 = 3, persamaan garisnya:
−4x + 3y = 25
3y −4x − 25 = 0


2. . Persamaan garis singgung pada lingkaran x2 + y2 = 13 yang melalui titik    (3, −2) adalah....
A. 2x − 3y = −13
B. 2x − 3y = 13
C. 3x − 2y = − 14
D. 3x − 2y = 13
E. 3x + 2y = 13
(Garis singgung lingkaran - uan 2002)

Pembahasan
Titik yang diberikan adalah (3, −2), dan belum diketahui posisinya pada lingkaran, apakah di dalam, di luar atau pada lingkaran. Cek terlebih dahulu,
(3, −2) → x2 + y2
= 32 + (−2)2 = 9 + 4
= 13

Hasilnya ternyata sama dengan 13 juga, jadi titik (3, −2) merupakan titik singgung. Seperti nomor 1:

3. Diberikan persamaan lingkaran L ≡ x2 + y2 = 25. Tentukan persamaan garis singgung pada lingkaran tersebut yang memiliki gradien sebesar 3.

Pembahasan
Menentukan persamaan garis singgung pada lingkaran yang pusatnya di (0, 0) dengan diketahui gradien garis singgungnya.

4. Salah satu persamaan garis singgung lingkaran x2 + y2 = 25 yang tegak lurus garis 2y − x + 3 = 0 adalah....
A. y = −1/2 x + 5/2√5
B. y = 1/2 x − 5/2√5
C. y = 2x − 5
D. y = −2x + 5√5
E. y = 2x + 5


Pembahasan
Garis 2y − x + 3 = 0 memiliki gradien sebesar 1/2. Garis lain yang tegak lurus dengan garis ini harus memiliki gradien − 2. Ingat pelajaran SMP 8, jika dua garis saling tegak lurus maka berlaku
          m1  m2 = − 1

Sehingga persamaan garis singgung di lingkaran x2 + y2 = 25 yang memiliki gradien −2 adalah:

Jadi persamaan garis singgungnya bisa y = −2x + 5√5  bisa juga y = −2x − 5√5, pilih yang ada.


5. Diberikan persamaan lingkaran:

L ≡ (x − 2)2 + (y + 3)2 = 25

Tentukan persamaan garis singgung lingkaran dengan titik singgung pada (5, 1).

Pembahasan
Persamaan garis singgung pada lingkaran:
L ≡ (x − a)2 + (y − b)2 = r2
pada titik singgung (x1, y1)
6. Diberikan persamaan lingkaran:

L ≡ (x − 2)2 + (y + 3)2 = 25

Tentukan persamaan garis singgung pada lingkaran tersebut yang sejajar dengan garis y = 2x + 3.

Pembahasan
Garis singgung pada lingkaran dengan pusat (a, b) diketahui gradien m

Garis singgung yang diminta sejajar dengan garis y = 2x + 3 sehingga gradiennya sama yaitu 2.

7. Persamaan garis singgung pada lingkaran x2 + y2 − 2x + 4y − 220 = 0 yang sejajar dengan garis 5 y + 12x + 8 = 0 adalah...
A. 12 x + 5y − 197 = 0 dan 12x + 5y + 195 = 0
B. 12 x + 5y + 197 = 0 dan 12x + 5y − 195 = 0
C. 5 x + 12y + 197 = 0 dan 5x + 12y + 195 = 0
D. 5x + 12y − 197 = 0 dan 5x + 12y − 195 = 0
E. 12 x − 5y − 197 = 0 dan 12x − 5y + 195 = 0


Pembahasan
Lingkaran x2 + y2 − 2x + 4y − 220 = 0 memiliki pusat:

Gradien garis singgungnya sejajar dengan 5 y + 12x + 8 = 0, jadi gradiennya adalah −12/5.

Persamaannya:



Sehingga dua buah garis singgungnya masing-masing adalah


8. Persamaan garis singgung lingkaran x2 + y2 − 4x + 2y − 20 = 0 di titik (5, 3) adalah....
A. 3x − 4y + 27 = 0
B. 3x + 4y − 27 = 0
C. 3x + 4y − 27 = 0
D. 7x+ 4y − 17 = 0
E. 7x + 4y − 17 = 0
(UN 2005)

Pembahasan
Titik singgung : (x1, y1)
pada lingkaran : L ≡ x2 + y2 + Ax + By + C = 0

Rumus garis singgungnya:


Data:
x2 + y2 − 4x + 2y − 20 = 0
Titik (5, 3)

A = −4
B = 2
C = − 20
x1 = 5
y1 = 3

Garis singgungnya:



9. Persamaan garis singgung lingkaran x2 + y2 − 6x + 4y − 12 = 0 di titik (7, 1) adalah….
A. 3x − 4y − 41 = 0
B. 4x + 3y − 55 = 0
C. 4x − 5y − 53 = 0
D. 4x + 3y − 31 = 0
E. 4x − 3y − 40 = 0
(un 2011)

Pembahasan
Data soal:
L ≡ x2 + y2 − 6x + 4y − 12 = 0
A = −6
B = 4
C = − 12

(7, 1)
x1 = 7
y1 = 1

Rumus sebelumnya, diperoleh garis singgung lingkaran:




10. Lingkaran L ≡ (x + 1)2 + (y − 3)2 = 9 memotong garis y = 3. Garis singgung lingkaran yang melalui titik potong antara lingkaran dan garis tersebut adalah...
A. x = 2 dan x = − 4
B. x = 2 dan x = − 2
C. x = − 2 dan x = 4
D. x = − 2 dan x = − 4
E. x = 8 dan x = − 10
(Garis singgung lingkaran - un 2009 dan un 2012)

Pembahasan
Data soal:
Polanya:
L ≡ (x − a)2 + (y − b)2 = r2
Pusatnya (a, b)

L ≡ (x + 1)2 + (y − 3)2 = 9
a = −1
b = 3

y = 3 memotong lingkaran ini, masukkan nilai y ke persamaan, ketemu nilai x, dengan demikian titik-titik singgungnya akan diketahui.

(x + 1)2 + (y − 3)2 = 9
(x + 1)2 + (3 − 3)2 = 9
(x + 1)2 + 0 = 9
(x + 1)2 = 9
(x + 1) = ±3
x + 1 = 3
x = 2
x + 1 = −3
x = −4

Titik singgungnya: ( −4, 3) dan (2, 3)



Untuk titik singgung (x1, y1) = ( −4, 3) dengan pusatnya tadi (a, b) = (−1, 3)
https://matematikastudycenter.com/images/11-persamaan-garis-singgung-lingkaran-10a.png

Untuk titik singgung (x1, y1) = ( 2, 3) dengan pusatnya tadi (a, b) = (−1, 3)

Latihan
Soal No. 1
Persamaan garis singgung melalui titik A(−2, −1) pada lingkaran x2 + y2 + 12x −6y + 13 = 0 adalah...
A. −2x −y −5 = 0
B. x − y + 1 = 0
C. x + 2y + 4 = 0
D. 3x − 2y + 4
E. 2x − y + 3 = 0
Petunjuk
Kerjakan seperti contoh no. 8

Soal No. 2
Persamaan garis singgung lingkaran (x − 3)2 + (y + 5)2 = 80 yang sejajar dengan garis y − 2x + 5 = 0 adalah...
A. y = 2x − 11 ± 20
B. y = 2x − 8 ± 20
C. y = 2x − 6 ± 15
D. y = 2x − 8 ± 15
E. y = 2x − 6 ± 25
Petunjuk
Kerjakan seperti contoh no. 6
Share

Komentar

Postingan populer dari blog ini

DETERMINAN DAN INVERS MATRIKS ( KELAS XI IPS)

TUGAS MATEMATIKA HARI SELASA ,24 OTOBER 2023